Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6682): 519-523, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301028

RESUMO

Sign languages are naturally occurring languages. As such, their emergence and spread reflect the histories of their communities. However, limitations in historical recordkeeping and linguistic documentation have hindered the diachronic analysis of sign languages. In this work, we used computational phylogenetic methods to study family structure among 19 sign languages from deaf communities worldwide. We used phonologically coded lexical data from contemporary languages to infer relatedness and suggest that these methods can help study regular form changes in sign languages. The inferred trees are consistent in key respects with known historical information but challenge certain assumed groupings and surpass analyses made available by traditional methods. Moreover, the phylogenetic inferences are not reducible to geographic distribution but do affirm the importance of geopolitical forces in the histories of human languages.


Assuntos
Idioma , Linguística , Língua de Sinais , Humanos , Idioma/história , Linguística/classificação , Linguística/história , Filogenia
2.
Front Aging Neurosci ; 12: 578339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551785

RESUMO

Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.

3.
Cortex ; 118: 65-81, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30987738

RESUMO

By studying the behavior of nonhuman primates, particularly in wild settings, researchers have been able to investigate a range of cognitive abilities, shedding light on the evolution of certain aspects of cognition and revealing potential evolutionary precursors of many capacities considered uniquely human. Vervet monkeys (Chlorocebus pygerythrus) have been widely investigated due to their prevalence and their suitability for experimental testing in the wild with an ecologically valid approach that is not possible with many other primates, especially apes. Here we review advances in the understanding of a number of cognitive and behavioral processes that have been gleaned from studies conducted with wild vervet monkeys over the past half century, primarily focusing on social cognitive abilities. We direct our attention to three major areas of study; communication, cooperation and trade, and social learning. We discuss how findings from this species have contributed (and continue to contribute) to our understanding of the evolution of human cognitive capacities and suggest future avenues of research with this species.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Aprendizado Social/fisiologia , Animais , Chlorocebus aethiops/fisiologia , Humanos , Primatas , Comportamento Social
4.
Front Neurol ; 9: 766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279675

RESUMO

Neuroimaging studies have described the brain alterations in primary progressive aphasia (PPA) variants (semantic, logopenic, nonfluent/agrammatic). However, few studies combined T1, FDG-PET, and diffusion MRI techniques to study atrophy, hypometabolism, and tract alterations across the three PPA main variants. We therefore explored a large early-stage cohort of semantic, logopenic and nonfluent/agrammatic variants (N = 86) and of 23 matched healthy controls with anatomical MRI (cortical thickness), FDG PET (metabolism) and diffusion MRI (white matter tracts analyses), aiming at identifying cortical and sub-cortical brain alterations, and confronting these alterations across imaging modalities and aphasia variants. In the semantic variant, there was cortical thinning and hypometabolism in anterior temporal cortices, with left-hemisphere predominance, extending toward posterior temporal regions, and affecting tracts projecting to the anterior temporal lobes (inferior longitudinal fasciculus, uncinate fasciculus) and tracts projecting to or running nearby posterior temporal cortices: (superior longitudinal fasciculus, inferior frontal-occipital fasciculus). In the logopenic variant metabolic alterations were more extensive than atrophy affecting mainly the left temporal-parietal junction and extending toward more anterior temporal cortices. Metabolic and tract data were coherent given the alterations of the left superior and inferior longitudinal fasciculus and the left inferior frontal-occipital fasciculus. In the nonfluent/agrammatic variant cortical thinning and hypometabolism were located in the left frontal cortex but Broca's area was only affected on metabolic measures. Metabolic and tract alterations were coherent as reflected by damage to the left uncinate fasciculus connecting with Broca's area. Our findings provide a full-blown statistically robust picture of brain alterations in early-stage variants of primary progressive aphasia which has implications for diagnosis, classification and future therapeutic strategies. They demonstrate that in logopenic and semantic variants patterns of brain damage display a non-negligible overlap in temporal regions whereas they are substantially distinct in the nonfluent/agrammatic variant (frontal regions). These results also indicate that frontal networks (combinatorial syntax/phonology) and temporal networks (lexical/semantic representations) constitute distinct anatomo-functional entities with differential vulnerability to degenerative processes in aphasia variants. Finally, the identification of the specific damage patterns could open an avenue for trans-cranial stimulation approaches by indicating the appropriate target-entry into the damaged language system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...